Reaction of folded acetate-bridged *ortho*-palladated complexes with CH_2Cl_2 . Crystal structure of [{ $Pd(C_6H_5-CH_2-N = C-(COC_6H_5)-C_6H_4)(\mu-Cl)$ }]

Carmen Navarro-Ranninger, Isabel López-Solera, Amparo Alvarez-Valdés, Jesús H. Rodríguez, José R. Masaguer and José L. García-Ruano

Departamento de Química, Universidad Autónoma, Cantoblanco, 28049-Madrid (Spain)

Xavier Solans

Departament de Cristallografía, Mineralogía, Universitat de Barcelona, 08007 Barcelona (Spain) (Received August 2, 1993)

Abstract

Folded acetate-bridged ortho-palladated complexes of benzoylbenzylideneamines react with CH_2Cl_2 to afford unfolded chlorobridged ortho-palladated complexes. This finding is supported by an X-ray crystallographic study of the complex [{Pd(C₆H₅-CH₂-N=C-(COC₆H₅)-C₆H₄)(μ -Cl)}₂].

Key words: Palladium; X-ray structure; Ortho metallation; Dinuclear

1. Introduction

The reaction of N-(4-methoxyphenyl)- α -benzoylbenzylideneamine (1a) with palladium(II) acetate under various conditions allowed us to isolate two acetate-bridged *ortho*-metallated atropisomers with a folded structure (2a). The purification of these complexes by chromatography using CH₂Cl₂ and CH₂Cl₂-EtOH as eluents allowed us to isolate a further minor product (< 10%), as we have indicated previously [1].

In order to clarify the structure and the origin of this minor product and to check if similar products could be formed from other benzoylbenzylideneamines, we have investigated the mixtures obtained by reaction between palladium(II) acetate and N-(4-chlorophenyl)-(1b) [2], N-benzyl-(1c) [3], and N-phenyl-ethyl- α -benzoylbenzylideneamine (1d) [3] (Scheme 1). In this paper we report the results which demonstrate that CH_2Cl_2 , usually considered an inert solvent, is able to transform the folded acetate-bridged complexes in the corresponding unfolded chlorobridged *ortho*-metallated complexes.

2. Results and discussion

The reaction mixtures containing the folded acetate-bridged *ortho*-palladated complexes 2a-d [1-3], were chromatographed with CH₂Cl₂ and CH₂Cl₂-EtOH. This allowed us to separate the orange folded acetate-bridged cyclopalladated complexes 2a-d, and also two new yellow complexes 3a-d and 4a-d.

The microanalytical data of 4a-d are consistent with the empirical formula [LPdCl]. These complexes are insoluble in organic solvents (except DMSO and DMF). The IR spectra exhibit two asymmetric stretching absorptions at 312 and 308 cm⁻¹ in 4a; 319 and 295 cm⁻¹ in 4b; 315 and 294 cm⁻¹ in 4c and 307 and 240 cm⁻¹ in 4d, which can be assigned to ν (Pd-Cl) bridging vibra-

Correspondence to: Dr. C. Navarro-Ranninger.

tions, which indicates that these complexes are dinuclear. The ¹H NMR spectra show well-resolved separated signals in the aromatic region, contrary to what is observed for the folded acetate-bridged complexes 2a-d. These compounds are chloro-bridged cyclopalladated complexes with an unfolded structure [4 *].

The complexes 3a-d are soluble in organic solvents. The microanalytical data of these complexes are not reproducible, and always show values intermediate between those corresponding to [LPdCl] and to [LPdOAc]. The ¹H NMR spectra (Table 1) show wellresolved separated signals in the aromatic region, very similar to those of the unfolded chloro-bridged complexes 4a-d, but in contrast to those of the folded acetate-bridged complexes 2a-d, which suggests that the structures of complexes 3a-d should be similar to 4a-d. In the aliphatic region of the spectra of 3a-d we observed a signal at ca. 1.25 ppm assigned to the acetate methyl group which is more shielded than in 2a-d [5 *]. This fact is consistent with the resolution of the aromatic proton signals. The intensities of these last signals decrease, in solution as two new signals at ca. 1.60 and 3.70 ppm appear. However, there is no change in the aromatic region.

Similar changes (which do not affect the cyclometallated ligand) are also observed in the ¹³C NMR spectra (Table 1). In general, the carbon chemical shifts are similar to those observed in other cyclometallated complexes [1-3]. The more significant differences in the ¹³C NMR spectra concern the chemical shift of the acetate methyl group which initially appears at *ca*. 30 ppm (correlating with the ¹H signal at *ca*. 1.25 ppm), more deshielded than for **2a-d** (at *ca*. 24 ppm). This signal intensity decreases at the same time as that of a new signal at *ca*. 43 ppm (correlating with the ¹H signal at *ca*. 3.70 ppm) increases.

After the chromatographic fraction containing 3c was concentrated, a single crystal was isolated. Crystal

structure determination confirmed that the compound was the corresponding chloro-bridged cyclometallated complex 4c (see below), which demonstrates that 3c had evolved into 4c during the concentration process. All the above facts suggest that compounds 3a-d are unstable intermediates in the formation of the stable chloro-bridged complexes 4a-d. They exhibit structures intermediate between those of 2a-d and 4a-d[6 *].

When the chromatographic purification of complexes 2a-d was carried out with acetone/hexane as eluent, we never observed complexes 3a-d and 4a-d. Furthermore, if a solution of complexes 2a-d in CH_2Cl_2 is stirred for several days, we observed partial transformation to 3a-d and finally to 4a-d. Both facts suggest that CH_2Cl_2 is responsible for the evolution of 2a-d into 3a-d and 4a-d.

The X-ray diffraction studies of acetate-bridged cyclopalladated complexes with the folded structures 2a-d have shown that the two parallel square-planar units are situated opposite one another and that the Pd-Pd distances (2.927-3.047 Å) [1,2] are consistent with a metal-metal interaction [7]. To rationalize the transformation $2a-d \rightarrow 4a-d$, we note that generally the d⁸ binuclear complexes with metal-metal bond show an important photochemical reactivity. A molecular orbital model for Pd-Pd systems allows one-electron excitation from an antibonding orbital $(d\sigma^*)$ unconnected with the Pd-Pd bond into a bonding orbital $(p\sigma)$ yielding an excited state with diradical structure [8]. Our complexes 2a-d should be similar and also give rise to diradical structures. This implies an increase in reactivity, and particularly the possibility of intermolecular electronic transfer reactions, as when

^{*} Reference number with asterisk indicates a note in the list of references.

	¹ H NMR				¹³ C NMI	¹³ C NMR		
	3a	3b	3c	3d ^a	3a	3b	3c	
1					180.1	182.2	182.5	
2					192.4	191.4	190.9	
3					136.2	133.4	132.6	
4,4'	7.74, m, 2H	7.75, m, 2H	7.87, m, 2H	7.95, m, 2H	129.1	129.1	129.7	
5.5'	7.38, m, 2H	7.41, m, 2H	7.47, m, 2H	7.46, m, 2H	129.4	128.7	129.3	
6	7.56. m. 1H	7.59, m, 1H	7.65, m, 1H	7.63, m, 1H	135.5	135.4	135.6	
7					145.6	145.5	146.2	
8	6.56, br. 1H	6.93, dd (2.0, 7.2), 1H	6.77, dd (1.4, 7.1), 1H	6.61, d (7.8), 1H	128.3	129.2	128.2	
9	7.01, m, 1H	6.98, t (7.2), 1H	6.95, dt (1.4, 7.1), 1H	6.92, t (7.8), 1H	124.4	125.1	124.9	
10	7.14, m, 1H	7.09, m, 1H	7.08, t (7.1), 1H	7.04, m, 1H	131.0	132.2	131.1	
11	7.31. br. 1H	7.32, m. 1H	7.46, m, 1H	7.42, m, 1H	133.0	134.1	134.1	
12	,	···· ·· ······························	, ,		154.8	155.7	155.1	
13					137.8	143.7	136.2	
14.14'	6.94, ^b 2H	7.20–7.14, m	7.43, ^c m, 2H	7.35–7.15, m	125.5	125.5	128.4	
15,15'	6.68, ^b 2H	7.20–7.14, m	7.19, ^c m, 2H	7.35–7.15, m	113.1	128.7	128.4	
16	,		7.40, m, 1H	7.35–7.15, m	158.1	133.1	127.7	
17	3.72, s, 3H			1.84, m, 3H	55.2			
18			4.80, br, 2H	4.48, m, 1H			58.9	
19					179.8	181.5	180.2	
Others d	1.23. s	1.26, s	1.25, s	1.25, s	30.8	29.7	29.7	
	1.59. s	1.60, s	1.58, s	1.65, s	n.o.	28.3	n.o.	
	3.78, s	3.75, s	3.74, s	3.68, s	n.o.	n.o.	43.4	

^a The low yield obtained for the complex 3d prevented us from recording its ¹³C NMR spectrum. ^b AA'BB' system. ^c Assigned unambiguously. ^d The integral of these protons is not invariant. Abbreviations: br, broad; s, singlet; d, doublet; t, triplet; dd, double doublet; dt, double triplet; m, multiplet; n.o., not observed.

Fig. 1. The molecular structure of 4c showing the atom numbering scheme.

the folded acetate *ortho*-palladated complexes are eluted with CH_2Cl_2 [6 *].

TABLE 3. Selected bond distances and angles for compound 4c

2.1. Crystal structure of the complex 4c

X-ray diffraction shows that complex 4c is a chlorobridged cyclometallated dimer, in which each palladium atom is bonded to an imine nitrogen, the *ortho* carbon of the phenyl ring supporting the imine carbon (*endo* structure) and two chlorine atoms in a squareplanar coordination, with Pd 0.016 Å out on the mean plane passing through the C14, N, Pd, Cl and Cl^{*} atoms. The five-membered chelate ring is planar, the maximum displacement from the best-fit plane being 0.010 Å (C14).

The atom labelling scheme is shown in Fig. 1. Atomic parameters for the non-hydrogen atoms are listed in Table 2. Selected bond distances and bond angles are listed in Table 3.

The Pd-N and Pd-C14 bond lengths of 2.026(4) and 1.967(5) Å, respectively, are similar to those in analogous cyclometallated complexes [1-3]. The Pd-Pd intra- and inter-molecular distances of 3.553(4) Å and 8.613(5) Å, respectively, indicate there are no metal-metal interactions. The N-C8-C15-O torsion angle is $-86.7(1)^{\circ}$.

TABLE 2. Final atomic coordinates ($\times 1000$) and B_{eq} values for the non-hydrogen atoms and their estimated standard deviations for compound 4c

	x	у	z	B _{eq} ^a
Pd	4172(3)	7522(2)	11651(4)	3.02(2)
Cl	6547(15)	3258(7)	- 10539(15)	4.24(5)
0	3240(5)	2838(2)	3638(7)	7.18(22)
N	1309(4)	1714(2)	1351(5)	3.51(14)
C1	3560(7)	1280(4)	- 391(8)	5.30(29)
C2	4849(8)	979(4)	- 105(10)	6.05(36)
C3	5955(8)	1029(5)	1275(12)	6.71(40)
C4	5762(8)	1365(4)	2379(11)	6.59(35)
C5	4447(7)	1652(4)	2134(8)	5.30(27)
C6	3337(6)	1619(3)	713(7)	4.36(22)
C7	1923(6)	1960(3)	367(6)	4.24(21)
C8	1301(5)	2101(2)	2419(5)	3.69(17)
C9	677(6)	1782(3)	3326(6)	4.06(19)
C10	589(7)	2102(3)	4546(8)	5.22(26)
C11	38(8)	1735(4)	5391(7)	6.02(32)
C12	- 446(8)	1067(4)	4989(7)	5.48(32)
C13	- 368(6)	740(3)	3747(7)	4.57(28)
C14	177(5)	1097(3)	2911(6)	3.60(18)
C15	1988(6)	2821(3)	2794(7)	4.48(20)
C16	1131(5)	3450(2)	2217(6)	3.66(18)
C17	- 325(6)	3409(3)	1372(7)	4.69(22)
C18	- 1091(7)	4009(4)	883(9)	6.14(29)
C19	- 443(8)	4660(3)	1294(9)	6.10(31)
C20	1001(8)	4698(3)	2141(9)	5.87(31)
C21	1785(6)	4104(3)	2616(7)	4.45(23)

 $\overline{a} B_{eq} = (8\pi^2/3)\Sigma_{ii}U_{ii}a_ia_ia_i^*a_i^*.$

Distances (Å)		
Pd–N	2.026(4)	
Pd-C14	1.967(5)	
Pd-Cl	2.457(1)	
Pd-Cl ^a	2.317(1)	
N-C8	1.295(6)	
C8–C9	1.448(8)	
C8-C15	1.520(7)	
C9-C10	1.393(9)	
C9-C14	1.400(7)	
C10-C11	1.39(1)	
C11-C12	1.36(1)	
C12-C13	1.416(9)	
C13-C14	1.369(8)	
C15-O	1.214(6)	
C15-C123	1.458(7)	
Pd–Pd ^a	3.553(4)	
Angles (deg)		
N-Pd-C14	80.9(2)	
N-Pd-Cl	99.5(1)	
C14–Pd–Cl ^a	95.7(1)	
Cl-Pd-Cl ^a	83.9(1)	
Pd-N-C8	115.3(4)	
N-C8-C9	115.5(4)	
C8-C9-C14	114.6(5)	
Pd-C14-C9	113.6(4)	
Pd–Cl–Pd ^a	96.1(1)	

(-x, -y, -z).

The Pd-Cl bond *trans* to the aromatic carbon atom is significantly longer, 2.457(1) Å, than Pd-Cl^{*}, 2.317(1) Å, which is *trans* to the imine nitrogen, a consequence of the different *trans* influences of these atoms [9]. All distances and angles within the aromatic groups are normal.

The aromatic rings joined to methylene groups in this structure are perpendicular to the plane containing the Pd-Cl bonds. If the complexes 3a-d are unfolded, like complex 4c, the shielding of the acetate methyl groups observed in ¹H NMR spectra could be due to through-space interactions of the overlying rings.

3. Experimental section

IR spectra were recorded in Nujol mulls and KBr pellets in the 4000–200 cm⁻¹ range with a Perkin Elmer Model 283 spectrophotometer. NMR spectra were recorded on a Bruker WP-200-SY (200 MHz) spectrometer in CDCl₃ with TMS, as internal standard. The C, H, and N analyses were carried out with a Perkin Elmer 240B microanalyzer.

All solvents were purified prior to use by standard methods [10]. CH_2Cl_2 was carefully dried with CaH_2 . Palladium(II) acetate was purchased from Strem. The syntheses of other compounds follow published methods [11].

TABLE 4.	Crystal	Analysis	Parameters	of	Compound	4c
----------	---------	----------	------------	----	----------	----

Crystal data			
Formula	$C_{42}H_{32}N_2O_2Cl_2Pd_2$		
Symmetry	Monoclinic, $P2_1/n$		
Unit cell dimensions: a , b , $c(Å)$	10.406(2), 19.053(3), 9.932(1)		
β(°)	115.07(1)		
Packing: $V(Å^3)$, Z, D _c (g cm ⁻³)	1783.7(8), 2, 1.639		
$M, F(0, 0, 0), \mu(\text{cm}^{-1})$	879.7, 880, 11.79		
Experimental data			
Number of reflections:			
Measured	5638		
Observed	3863		
Standard reflections	3 reflections every 120 min, no variation		
Solution and refinement			
Solution	Patterson		
Refinement	Least-squares on F_{obs}		
H atoms	Geometric calculations		
<i>R</i> , <i>R</i> _w	0.061, 0.066		

Dimers 2a-d were prepared according to refs. 1-3. When the crude residue was column chromatographed (SiO₂) eluting with CH₂Cl₂ and CH₂Cl₂-EtOH (99:1), three separate bands became visible, yielding the complexes 2a-d (orange), complexes 3a-d (yellow) and 4a-d (yellow). Eluting with acetone-hexane produced only one band, yielding the complexes 2a-d (orange).

3.1. Structure determination and refinement of the complex 4c

Slow evaporation from a CH₂Cl₂ solution of complex 3c produced yellow crystals. A prismatic crystal $(0.1 \times 0.1 \times 0.2 \text{ mm})$ was selected and mounted on an Enraf-Nonius CAD4 diffractometer. Unit cell parameters were determined from automatic centring of 25 reflections ($16 \le \theta \le 21^\circ$) and refined by least-squares method. The data, the details of the data collection and structure analyses are summarized in Table 4. Intensities were obtained with graphite monochromated Mo K α radiation, using $\omega/2\theta$ scan technique. 5638 reflections were measured in the range $2 \le \theta \le 3^\circ$, 3863 of which were assumed as observed applying the condition $l \ge 2.5 \sigma(l)$. Three reflections were measured every two h as orientation and intensity control, significant intensity decay was not observed. Lorentzpolarization, but no absorption corrections were made.

The structure was solved by Patterson synthesis, using SHELXS [12] and refined by a full-matrix leastsquares method, with the SHELX76 [13]. The function minimized was $\Sigma w ||F_o| - |F_c||^2$, where $w = (\sigma^2(F_o) + 0.010 ||F_o||^2)^{-1}$. f, f' and f" were taken from International Tables of X-ray Crystallography [14]. The position of all H atoms was computed and refined with an overall isotropic temperature factor, using a riding model and the remaining atoms being treated anisotropically. The final R factor was 0.061 (Rw = 0.066) for all observed reflections. The number of refined parameters was 227. Max. shift/e.s.d = 0.1. Max. and min. pcaks in final difference synthesis were 0.3 and -0.3 e Å⁻³, respectively.

Acknowledgment

We thank the CICYT (Grant FAR 516/90) for financial support.

Supplementary material

Listings of anisotropic thermal parameters for nonhydrogen atoms, positional and isotropic thermal parameters for hydrogen atoms, and all bond distances and angles for 4c are available from the Cambridge Crystallographic Data Centre.

References and notes

- 1 J.L. García-Ruano, I. López-Solera, J.R. Masaguer, C. Navarro-Ranninger, J.H. Rodríguez and S. Martínez-Carrera, Organometallics, 11 (1992) 3013.
- 2 C. Navarro-Ranninger, to be published.
- 3 C. Navarro-Ranninger, I. López-Solera, A. Alvarez-Valdés, J. Rodríguez, J.R. Masaguer, J.L. García-Ruano and X. Solans, *Organometallics, 12* (1993) 4104.
- 4 These complexes are identical to those obtained by metathetical reaction of complexes 2a-d with NaCl in acetone, or by reaction of PdCl₂ with the corresponding ligand in MeOH. Microanalytical, ¹H and ¹³C NMR and IR data are collected in refs. 2, 3 and J.L. García-Ruano, I. López-Solera, J.R. Masaguer, M.A. Monge, C. Navarro-Ranninger and J.H. Rodríguez, *J. Organomet. Chem.*, 476 (1994) 111.
- 5 A similar greater shielding has been inferred when carboxylatobridged orthopalladated azine complexes are converted in asymmetric-bridge compounds with chlorothiolate implying opening up of the open-book structure (P. Espinet, personal communication).
- 6 Because the microanalytical and NMR data of these compounds are not reproducible, but always exhibit values intermediate between those of the folded acetate complexes and unfolded chloro-complexes, the species 3a-d could be formed by more than one compound. Each would be a different intermediate involved in the transition $2a-d \rightarrow 4a-d$. Radical (or nucleophilic) attack of Pd on the CH_2Cl_2 (with simultaneous Pd \cdots Pd bondsplitting, marking the transition from a folded to an unfolded structure) could be the initial step of this transformation. Species containing the fragments OAc, CH_2Cl and Cl (which might explain the signals at *ca*. 1.25 and 3.7 ppm in ¹H NMR spectra as well as those at *ca*. 30 and 43 ppm in ¹³C NMR spectra) could be formed successively during the acetate-chloride exchange.
- 7 (a) J. Vicente, M.T. Chicote, J. Martín, M. Artiago, X. Solans, M. Font-Altaba and M. Aguiló, J. Chem. Soc., Dalton Trans., (1988) 141; (b) M.C. Etler and A.R. Siedle, J. Am. Chem. Soc., 105 (1983) 641.

- 8 D.C. Smith and H.B. Gray, Coord. Chem. Rev., 100 (1990) 169.
- 9 G.B. Caygill and P.J. Steel, J. Organomet. Chem., 327 (1987) 115.
- 10 D.D. Perrin, W.L.F. Armarego and D.R. Perrin, *Purification of Laboratory Chemicals*, 2nd Ed., Pergamon, 1980, Oxford.
- 11 B. Alcaide, M.A. León-Santiago, R. Pérez-Ossorio, J. Plumet, M.A. Sierra and M. De la Torre, *Synthesis*, (1982) 989.
- 12 G.M. Sheldrick, Acta Cryst., A46 (1990) 467.
- 13 G.M. Sheldrick, SHELX, University of Cambridge, U.K.
- 14 International Tables of X-ray Crystallography, 1974, vol. IV, pp. 99-100 and 149. Kynoch Press, Birmingham, U.K.